
Enhancing Reasoning through Process Supervision with Monte Carlo Tree Search

Shuangtao Li1, Shuaihao Dong1, Kexin Luan1, Xinhan Di1, Chaofan Ding1,
1AI Lab, Giant Network

lishuangtao@ztgame.com, dongshuaihao@ztgame.com, luankexin@ztgame.com, dixinhan@ztgame.com,
dingchaofan@ztgame.com

Abstract

Large language models (LLMs) have demonstrated their re-
markable capacity across a variety of tasks. However, rea-
soning remains a challenge for LLMs. To improve LLMs’
reasoning ability, process supervision has proven to be bet-
ter than outcome supervision. In this work, we study using
Monte Carlo Tree Search (MCTS) to generate process su-
pervision data with LLMs themselves for training them. We
sample reasoning steps with an LLM and assign each step a
score that captures its ”relative correctness,” and the LLM is
then trained by minimizing weighted log-likelihood of gen-
erating the reasoning steps. This generate-then-train process
is repeated iteratively until convergence. Our experimental
results demonstrate that the proposed methods considerably
improve the performance of LLMs on two mathematical rea-
soning datasets. Furthermore, models trained on one dataset
also exhibit improved performance on the other, showing the
transferability of the enhanced reasoning ability.

Introduction
Although today’s large language models (LLMs) can per-
form excellently on a variety of language tasks (Zhao et al.
2023), even approaching human levels, reasoning remains
an unaddressed challenge for them (Huang and Chang 2023;
Valmeekam et al. 2022). To enhance their reasoning ability,
some studies use Chain-of-Thought (CoT) prompting (Nye
et al. 2021; Wei et al. 2022; Kojima et al. 2022) to encourage
LLMs to decompose given problems and think step by step,
but the elicited reasoning ability is still limited. Neverthe-
less, these works emphasize the importance of step-by-step
reasoning for LLMs.

To enhance LLMs’ reasoning ability, some researchers
propose Rejection sampling Fine-Tuning (RFT) (Yuan et al.
2023), which generates reasoning paths using LLMs and fil-
ters out those leading to incorrect answers. Moreover, the
Self-Taught Reasoner (STaR) (Zelikman et al. 2022) use the
ground truth answer as a hint for LLMs to generate rea-
soning paths that lead to correct answers. However, this
approach may also produce incorrect reasoning paths that
happen to arrive at the correct answer. Similarly, Iterative
Reasoning Preference Optimization (Pang et al. 2024) sam-
ples correct and incorrect CoTs to form preference pairs and

Copyright © 2025, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

iteratively applies Direct Preference Optimization (DPO)
(Rafailov et al. 2024). These training methods fall into the
category of outcome-supervised fine-tuning, as they directly
supervise the LLMs to produce correct final answers rather
than correct reasoning paths.

Process supervision provides LLMs with more precise
and fine-grained feedback. Lightman et al. (Lightman et al.
2023) find that their process reward models (PRM) perform
significantly better than outcome reward models (ORM).
Using a PRM, reasoning steps can be rewarded, enabling re-
inforcement learning to train LLMs to generate better CoTs.
However, Lightman et al. rely on human annotators to label
the reasoning steps, which is highly expensive, particularly
for challenging math problems. To automatically label rea-
soning steps, some works employ (Wang et al. 2024a,b; Luo
et al. 2024) Monte Carlo Sampling to estimate the ”correct-
ness” of the steps, showing that PRMs trained on their auto-
matically labeled data can even outperform those trained on
PRM800K (Lightman et al. 2023), a human-labeled dataset.
Wang et al. (Wang et al. 2024a) further train LLMs with
their PRMs using reinforcement learning, and find that it is
better than training with ORMs. ReST-MCTS* (Zhang et al.
2024b) leverages Monte Carlo Tree Search (MCTS) (Koc-
sis and Szepesvári 2006; Browne et al. 2012) to annotate the
process reward of each step for training a PRM, and use the
PRM to guide MCTS in turn.

Some studies propose methods that do not require a PRM
to provide process supervision to LLMs. Step-DPO (Lai
et al. 2024) and Self-Explore (Hwang et al. 2024) identify
the first incorrect step in a reasoning path through step-
by-step verification, creating a pairwise dataset for subse-
quent preference learning. MCTS-DPO (Xie et al. 2024) uti-
lizes MCTS to generate pairwise data for preference learn-
ing, with training and data generation performed iteratively.
However, MCTS-DPO labels reasoning steps only as chosen
or rejected, which does not accurately capture the quality of
the steps, which can lead to suboptimal performance. Addi-
tionally, MCTS-DPO forms preference pairs using only the
best and worst steps, discarding other steps that are poten-
tially valuable.

In this paper, we study using MCTS to generate process
supervision data. We apply MCTS at each step along the rea-
soning paths generated by an LLM, assigning a score that
captures ”relative correctness” to the sampled next steps.



Compared to binary preferences, the scores reflect the qual-
ity of the steps more accurately. The next steps with scores
are integrated into a weighted negative log-likelihood loss
function to train the LLM. We also iteratively generate train-
ing data and train the LLM, following MCTS-DPO. Our
experimental results demonstrate that the proposed meth-
ods considerably improve the performance of LLMs on two
mathematical reasoning datasets. Furthermore, the models
trained on one dataset also exhibit improved performance
on the other, showing the transferability of the enhanced rea-
soning ability.

Related Work
A key technique for enhancing reasoning is Chain-of-
Thought (CoT) prompting (Nye et al. 2021; Wei et al. 2022;
Kojima et al. 2022; Wang et al. 2022), which encourages
LLMs to think about problems step by step and generate
reasoning chains. It is also found that reasoning chains with
more steps are more likely to lead to correct answers (Fu
et al. 2022), further highlighting the importance of step-by-
step reasoning. Furthermore, tree search algorithms, such as
MCTS, are integrated with LLMs during inference to search
for correct reasoning paths, resulting in significant improve-
ments in performance on reasoning tasks (Hao et al. 2023;
Yao et al. 2024; Qi et al. 2024; Zhang et al. 2024a), but at
the cost of a substantial increase in inference compute.

While the aforementioned studies enhance reasoning dur-
ing inference, another research direction aims to instill rea-
soning ability into LLMs through training. Some studies
train LLMs using responses generated by the models them-
selves (Yuan et al. 2023; Zelikman et al. 2022; Pang et al.
2024; Trung et al. 2024), employing supervised fine-tuning
or reinforcement learning. Question synthesis has also been
shown to be effective for generating training data (Yu et al.
2023; Liu et al. 2024; Lu et al. 2024; Li et al. 2024), where
several data augmentation techniques are commonly ap-
plied.

Recently, an increasing number of studies have demon-
strated that process supervision is more effective than out-
come supervision, for training both reward models (Light-
man et al. 2023; Wang et al. 2024a,b; Luo et al. 2024) and
LLMs (Lai et al. 2024; Hwang et al. 2024; Xie et al. 2024;
Wang et al. 2024a; Chen et al. 2024). Learned process re-
ward models are usually used for reinforcement learning and
for selecting the best reasoning path from a set of sampled
paths. In this paper, we explore training LLMs with pro-
cess supervision without relying on reward models, thereby
avoiding the complexity and instability of reinforcement
learning.

Proposed Methods
Assume that we have a dataset of reasoning problems (e.g.,
mathematical problems) and their corresponding answers
P = {(xi, yi)}Ni=1. Our goal is to enhance the reasoning
ability of the target LLM with P without human annotation.
In addition, we assume that we are not accessible to LLMs
stronger than the target LLM, so that our methods can be
applied to the strongest LLMs.

Figure 1: An overview of the proposed methods.

The proposed methods are illustrated in Figure 1. We train
LLMs in a self-training manner (Zhang et al. 2024b; Zelik-
man et al. 2022), i.e., training LLMs on the data generated
by themselves. We leverage MCTS to sample and search for
step-by-step reasoning paths and collect training data from
the constructed search tree. The generated training data are
then used to perform supervised fine-tuning (SFT) on the
LLM. This generate-and-fine-tune process is repeated itera-
tively until it converges.

In the following sections, we will describe in detail how
we generate our training data and train the LLM on the gen-
erated data.

Data Generation
We generate a training dataset D = {(xi, pij , s

i
j , c

i
j)}Ni=1,

where xi denotes the i-th problem in P , pij denotes the j-th
partial solution to xi, sij denotes the next steps of the partial
solution pij , and cij denotes the scores assigned to sij .

For each problem in P , We regard each individual step
in problem-solving steps as a tree node, and the steps are
separated by two newline characters. We perform MCTS at
each step along the reasoning paths generated by the LLM,
exploring the best next steps. Specifically, for each partial
solution pij of the problem xi, we follow the iterative proce-
dure below:

1. Selection. Starting from the root node (i.e., pij), we select
the child node with the highest Upper Confidence Bound
(UCB) (Kocsis and Szepesvári 2006) value until the cur-
rent node is either not fully expanded or represents a final
step of the solution (e.g., ”The final answer is 3.”).

2. Expansion. If the current node does not represent a final
step and has not been fully expanded, we sample the next



Table 1: Performance on MATH and GSM8K. Results are reported as mean ± standard error.

Method Llama-3.1-8B-Instruct deepseek-math-7b-instruct
MATH GSM8K MATH GSM8K

Zero-shot-CoT 47.07± 0.15 80.77± 0.25 41.20± 0.27 78.79± 0.20

RFT 47.96± 0.21 83.33± 0.25 42.04± 0.15 80.90± 0.18

Step-level DPO - Iteration 1 47.12± 0.31 82.43± 0.27 41.32± 0.21 80.67± 0.25
Step-level DPO - Iteration 2 47.31± 0.19 82.55± 0.17 41.14± 0.10 80.52± 0.23
Step-level DPO - Iteration 3 48.29± 0.18 / 41.48± 0.30 /
Step-level DPO - Iteration 4 48.48± 0.27 / / /

Ours - Iteration 1 50.04± 0.07 85.35± 0.24 43.15± 0.28 81.77± 0.33
Ours - Iteration 2 50.84± 0.20 85.80± 0.22 44.11± 0.20 82.02± 0.18
Ours - Iteration 3 51.52± 0.18 / 44.57± 0.27 /
Ours - Iteration 4 51.92± 0.20 / / /

Table 2: Results of the transfer experiments where models are trained on one dataset and tested on the other.

Method Llama-3.1-8B-Instruct deepseek-math-7b-instruct
GSM8K to MATH MATH to GSM8K GSM8K to MATH MATH to GSM8K

Ours - Iteration 1 48.50± 0.31 85.21± 0.15 41.15± 0.31 80.36± 0.38
Ours - Iteration 2 48.74± 0.26 85.72± 0.14 41.58± 0.25 81.09± 0.18
Ours - Iteration 3 / 85.53± 0.16 / 81.10± 0.17
Ours - Iteration 4 / 85.65± 0.21 / /

step as a new child node using the LLM with a non-zero
temperature.

3. Simulation. From the newly expanded node, we sample
the continuation of the partial solution using the LLM
until it produces a final answer.

4. Backpropagation. After the simulation, we compare the
produced final answer with the ground truth, and prop-
agate the reward (1.0 for correct and 0.0 for incorrect)
back through the visited nodes in the tree, updating
their visit counts and cumulative rewards to guide future
searches.

After repeating the above procedure multiple times, we
have constructed a tree where the child nodes of the root
node represent the next steps of pij . For the k-th node vij,k in
the child nodes, its score is computed as follows:

rij,k = α ·N(vij,k) ·

(
Q(vij,k)

N(vij,k)
−
∑

m Q(vij,m)∑
m N(vij,m)

)
(1)

where Q(·) is the cumulative reward of a node, N(·) is the
visit counts of a node, and α is a manually set constant for
controlling the scale of the scores. The expression in paren-
theses captures the ”relative correctness” of vk. Finally, we
add 4-tuples {(xi, pij , s

i
j,k, r

i
j,k)} into the training dataset,

where sij,k is the step corresponding to vij,k, except for the
steps whose score is 0.

Then, we append the next step with the highest UCB value
to pij to obtain a new partial solution, and perform the above
procedure again, until the next step is a final step or the max-
imum solution length limit is reached.

Iterative Training
We iteratively train the LLM after generating training data
using the LLM from the last iteration, starting with the pre-
trained LLM at the first iteration. In each iteration, a certain
number of problems are sampled from P for data generation.

At the i-th iteration, the LLM is trained by minimizing the
following loss:

L(πθi) = −E(x,p,s,r)∼Di
[r log πθi(s | x, p))]+

DKL(πθi(s | x, p) ∥ πθi−1
(s | x, p)) (2)

where πθi denotes the LLM at the i-th iteration. The first
term is weighted negative log-likelihood. Inspired by rein-
forcement learning from human feedback (Ouyang et al.
2022), we incorporate a KL penalty in the second term to
mitigate the distribution shift, which is a challenge in offline
reinforcement learning. In fact, our training method can be
regarded as a form of reinforcement learning.

Experiments
Setup
We apply the proposed methods to Llama-3.1-8B-Instruct1
and deepseek-math-7b-instruct2, and evaluate the perfor-
mance on two popular mathematics datasets, GSM8K
(Cobbe et al. 2021) and MATH (Hendrycks et al. 2021).

1https://huggingface.co/meta-llama/Llama-3.1-8B-Instruct
2https://huggingface.co/deepseek-ai/deepseek-math-7b-

instruct



For comparison, the first baseline is Zero-shot-CoT (Ko-
jima et al. 2022). The second baseline is Rejective Sam-
pling Fine-Tuning (RFT) (Yuan et al. 2023), which generates
training data by sampling the correct solutions generated by
the LLM itself.

To demonstrate that our data generation method is supe-
rior to selecting the best and worst steps (i.e., the steps with
the highest and lowest average rewards, respectively, similar
to the method in (Xie et al. 2024)) to form preference pairs,
we also iteratively train LLMs on the perference data gener-
ated in this way. We use DPO for preference optimization,
and this baseline is referred to as Step-level DPO.

For efficient training, all models are trained using Low-
Rank Adaptation (LoRA) (Hu et al. 2021) .

Main Results
The experimental results are presented in Table 1. We re-
port the results of iterative training until the accuracies do
not increase anymore. It can be observed that our methods
consistently outperform the baselines by large margins, with
accuracies improving during iterative training. However, the
performance converges quickly and fails to continually im-
prove over more iterations. As a result, not all the problems
in the training sets of MATH and GSM8K are used for train-
ing: only about 2,000 in MATH and 2,000 in GSM8K are
used. In addition, the performance converges more quickly
on GSM8K than on MATH, which we attribute to the lower
difficulty of GSM8K, making it easier for models to learn.
It is noteworthy that Step-level DPO achieves only very
marginal improvements on MATH, which indicates that our
data generation method is significantly superior.

Transferability Evaluation
The MATH dataset consists of high school math com-
petition problems, while GSM8K comprises grade school
math problems. If the LLMs’ mathematical reasoning abil-
ity has been improved, they should perform better on both
datasets. Therefore, we evaluate the transferability of the
models by training it on MATH/GSM8K and testing it on
GSM8K/MATH to verify whether their mathematical rea-
soning ability has indeed been enhanced.

As shown in Table 2, our methods outperform Zero-shot-
CoT on unseen datasets, indicating they indeed learn math-
ematical reasoning ability. As expected, the improvements
are less substantial than those observed in non-transfer ex-
periments, since the problems in the two datasets require dif-
ferent mathematical skills and knowledge.

Conclusion and Limitations
In this work, we propose a process supervision data gen-
eration method utilizing MCTS and a training approach,
for improving the reasoning ability of LLMs. We evalu-
ate the proposed methods on two well-known mathemati-
cal datasets and demonstrating the effectiveness. The trained
models also outperform the pre-trained models on datasets
they are not trained on, showing the transferability of their
learned knowledge and skills.

However, the performance converges quickly during itera-
tive training, failing to continually improve over many itera-
tions, and we do not even use all the problems in the training
sets. Training for more iterations or using more problems not
only fails to improve the performance but actually degrades
it. Future research could study the underlying reasons for
this phenomenon and how to achieve more substantial im-
provements with more iterations.

In addition, the models in our experiments are trained us-
ing LoRA, which could have limited the magnitude of the
observed improvements.

References
Browne, C. B.; Powley, E.; Whitehouse, D.; Lucas, S. M.;
Cowling, P. I.; Rohlfshagen, P.; Tavener, S.; Perez, D.;
Samothrakis, S.; and Colton, S. 2012. A survey of Monte
Carlo tree search methods. IEEE Transactions on Computa-
tional Intelligence and AI in games, 4(1): 1–43.
Chen, G.; Liao, M.; Li, C.; and Fan, K. 2024. AlphaMath
Almost Zero: process Supervision without process. arXiv
preprint arXiv:2405.03553.
Cobbe, K.; Kosaraju, V.; Bavarian, M.; Chen, M.; Jun, H.;
Kaiser, L.; Plappert, M.; Tworek, J.; Hilton, J.; Nakano, R.;
et al. 2021. Training verifiers to solve math word problems.
arXiv preprint arXiv:2110.14168.
Fu, Y.; Peng, H.; Sabharwal, A.; Clark, P.; and Khot, T. 2022.
Complexity-based prompting for multi-step reasoning. In
The Eleventh International Conference on Learning Repre-
sentations.
Hao, S.; Gu, Y.; Ma, H.; Hong, J. J.; Wang, Z.; Wang, D. Z.;
and Hu, Z. 2023. Reasoning with language model is plan-
ning with world model. arXiv preprint arXiv:2305.14992.
Hendrycks, D.; Burns, C.; Kadavath, S.; Arora, A.; Basart,
S.; Tang, E.; Song, D.; and Steinhardt, J. 2021. Measuring
mathematical problem solving with the math dataset. arXiv
preprint arXiv:2103.03874.
Hu, E. J.; Shen, Y.; Wallis, P.; Allen-Zhu, Z.; Li, Y.; Wang,
S.; Wang, L.; and Chen, W. 2021. Lora: Low-rank adaptation
of large language models. arXiv preprint arXiv:2106.09685.
Huang, J.; and Chang, K. C.-C. 2023. Towards Reasoning
in Large Language Models: A Survey. In Rogers, A.; Boyd-
Graber, J.; and Okazaki, N., eds., Findings of the Associa-
tion for Computational Linguistics: ACL 2023, 1049–1065.
Toronto, Canada: Association for Computational Linguis-
tics.
Hwang, H.; Kim, D.; Kim, S.; Ye, S.; and Seo, M. 2024.
Self-Explore: Enhancing Mathematical Reasoning in Lan-
guage Models with Fine-grained Rewards. In Findings of the
Association for Computational Linguistics: EMNLP 2024,
1444–1466.
Kocsis, L.; and Szepesvári, C. 2006. Bandit based monte-
carlo planning. In European conference on machine learn-
ing, 282–293. Springer.
Kojima, T.; Gu, S. S.; Reid, M.; Matsuo, Y.; and Iwasawa,
Y. 2022. Large language models are zero-shot reason-
ers. Advances in neural information processing systems, 35:
22199–22213.



Lai, X.; Tian, Z.; Chen, Y.; Yang, S.; Peng, X.; and Jia, J.
2024. Step-dpo: Step-wise preference optimization for long-
chain reasoning of llms. arXiv preprint arXiv:2406.18629.
Li, C.; Wang, W.; Hu, J.; Wei, Y.; Zheng, N.; Hu, H.;
Zhang, Z.; and Peng, H. 2024. Common 7b language mod-
els already possess strong math capabilities. arXiv preprint
arXiv:2403.04706.
Lightman, H.; Kosaraju, V.; Burda, Y.; Edwards, H.; Baker,
B.; Lee, T.; Leike, J.; Schulman, J.; Sutskever, I.; and
Cobbe, K. 2023. Let’s verify step by step. arXiv preprint
arXiv:2305.20050.
Liu, H.; Zhang, Y.; Luo, Y.; and Yao, A. C.-C. 2024. Aug-
menting math word problems via iterative question compos-
ing. arXiv preprint arXiv:2401.09003.
Lu, Z.; Zhou, A.; Ren, H.; Wang, K.; Shi, W.; Pan, J.; Zhan,
M.; and Li, H. 2024. Mathgenie: Generating synthetic data
with question back-translation for enhancing mathematical
reasoning of llms. arXiv preprint arXiv:2402.16352.
Luo, L.; Liu, Y.; Liu, R.; Phatale, S.; Lara, H.; Li, Y.; Shu, L.;
Zhu, Y.; Meng, L.; Sun, J.; et al. 2024. Improve Mathemat-
ical Reasoning in Language Models by Automated Process
Supervision. arXiv preprint arXiv:2406.06592.
Nye, M.; Andreassen, A. J.; Gur-Ari, G.; Michalewski, H.;
Austin, J.; Bieber, D.; Dohan, D.; Lewkowycz, A.; Bosma,
M.; Luan, D.; et al. 2021. Show your work: Scratchpads
for intermediate computation with language models. arXiv
preprint arXiv:2112.00114.
Ouyang, L.; Wu, J.; Jiang, X.; Almeida, D.; Wainwright, C.;
Mishkin, P.; Zhang, C.; Agarwal, S.; Slama, K.; Ray, A.;
et al. 2022. Training language models to follow instructions
with human feedback. Advances in neural information pro-
cessing systems, 35: 27730–27744.
Pang, R. Y.; Yuan, W.; Cho, K.; He, H.; Sukhbaatar, S.; and
Weston, J. 2024. Iterative reasoning preference optimiza-
tion. arXiv preprint arXiv:2404.19733.
Qi, Z.; Ma, M.; Xu, J.; Zhang, L. L.; Yang, F.; and Yang,
M. 2024. Mutual reasoning makes smaller llms stronger
problem-solvers. arXiv preprint arXiv:2408.06195.
Rafailov, R.; Sharma, A.; Mitchell, E.; Manning, C. D.; Er-
mon, S.; and Finn, C. 2024. Direct preference optimization:
Your language model is secretly a reward model. Advances
in Neural Information Processing Systems, 36.
Trung, L.; Zhang, X.; Jie, Z.; Sun, P.; Jin, X.; and Li, H.
2024. Reft: Reasoning with reinforced fine-tuning. In Pro-
ceedings of the 62nd Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), 7601–
7614.
Valmeekam, K.; Olmo, A.; Sreedharan, S.; and Kambham-
pati, S. 2022. Large language models still can’t plan (a
benchmark for LLMs on planning and reasoning about
change). In NeurIPS 2022 Foundation Models for Decision
Making Workshop.
Wang, P.; Li, L.; Shao, Z.; Xu, R.; Dai, D.; Li, Y.; Chen, D.;
Wu, Y.; and Sui, Z. 2024a. Math-shepherd: Verify and rein-
force llms step-by-step without human annotations. In Pro-
ceedings of the 62nd Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), 9426–
9439.
Wang, X.; Wei, J.; Schuurmans, D.; Le, Q.; Chi, E.; Narang,
S.; Chowdhery, A.; and Zhou, D. 2022. Self-consistency
improves chain of thought reasoning in language models.
arXiv preprint arXiv:2203.11171.
Wang, Z.; Li, Y.; Wu, Y.; Luo, L.; Hou, L.; Yu, H.; and
Shang, J. 2024b. Multi-step problem solving through a veri-
fier: An empirical analysis on model-induced process super-
vision. arXiv preprint arXiv:2402.02658.
Wei, J.; Wang, X.; Schuurmans, D.; Bosma, M.; Xia, F.;
Chi, E.; Le, Q. V.; Zhou, D.; et al. 2022. Chain-of-
thought prompting elicits reasoning in large language mod-
els. Advances in neural information processing systems, 35:
24824–24837.
Xie, Y.; Goyal, A.; Zheng, W.; Kan, M.-Y.; Lillicrap, T. P.;
Kawaguchi, K.; and Shieh, M. 2024. Monte Carlo Tree
Search Boosts Reasoning via Iterative Preference Learning.
arXiv preprint arXiv:2405.00451.
Yao, S.; Yu, D.; Zhao, J.; Shafran, I.; Griffiths, T.; Cao,
Y.; and Narasimhan, K. 2024. Tree of thoughts: Deliber-
ate problem solving with large language models. Advances
in Neural Information Processing Systems, 36.
Yu, L.; Jiang, W.; Shi, H.; Yu, J.; Liu, Z.; Zhang, Y.; Kwok,
J. T.; Li, Z.; Weller, A.; and Liu, W. 2023. Metamath: Boot-
strap your own mathematical questions for large language
models. arXiv preprint arXiv:2309.12284.
Yuan, Z.; Yuan, H.; Li, C.; Dong, G.; Lu, K.; Tan, C.; Zhou,
C.; and Zhou, J. 2023. Scaling relationship on learning
mathematical reasoning with large language models. arXiv
preprint arXiv:2308.01825.
Zelikman, E.; Wu, Y.; Mu, J.; and Goodman, N. 2022. Star:
Bootstrapping reasoning with reasoning. Advances in Neu-
ral Information Processing Systems, 35: 15476–15488.
Zhang, D.; Li, J.; Huang, X.; Zhou, D.; Li, Y.; and Ouyang,
W. 2024a. Accessing GPT-4 level Mathematical Olympiad
Solutions via Monte Carlo Tree Self-refine with LLaMa-3
8B. arXiv preprint arXiv:2406.07394.
Zhang, D.; Zhoubian, S.; Hu, Z.; Yue, Y.; Dong, Y.; and
Tang, J. 2024b. Rest-mcts*: Llm self-training via process re-
ward guided tree search. arXiv preprint arXiv:2406.03816.
Zhao, W. X.; Zhou, K.; Li, J.; Tang, T.; Wang, X.;
Hou, Y.; Min, Y.; Zhang, B.; Zhang, J.; Dong, Z.; et al.
2023. A survey of large language models. arXiv preprint
arXiv:2303.18223.


