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Abstract

This work compares large language models (LLMs) and
neuro-symbolic approaches in solving Raven’s progressive
matrices (RPM), a visual abstract reasoning test that involves
the understanding of mathematical rules such as progression
or arithmetic addition. Providing the visual attributes directly
as textual prompts, which assumes an oracle visual percep-
tion module, allows us to measure the model’s abstract rea-
soning capability in isolation. Despite providing such com-
positionally structured representations from the oracle visual
perception and advanced prompting techniques, both GPT-
4 and Llama-3 70B cannot achieve perfect accuracy on the
center constellation of the I-RAVEN dataset. Our analy-
sis reveals that the root cause lies in the LLM’s weakness
in understanding and executing arithmetic rules. As a po-
tential remedy, we analyze the Abductive Rule Learner with
Context-awareness (ARLC), a neuro-symbolic approach that
learns to reason with vector-symbolic architectures (VSAs).
Here, concepts are represented with distributed vectors s.t.
dot products between encoded vectors define a similarity ker-
nel, and simple element-wise operations on the vectors per-
form addition/subtraction on the encoded values. We find that
ARLC achieves almost perfect accuracy on the center con-
stellation of I-RAVEN, demonstrating a high fidelity in arith-
metic rules. To stress the length generalization capabilities of
the models, we extend the RPM tests to larger matrices (3×10
instead of typical 3×3) and larger dynamic ranges of the at-
tribute values (from 10 up to 1000). We find that the LLM’s
accuracy of solving arithmetic rules drops to sub-10%, espe-
cially as the dynamic range expands, while ARLC can main-
tain a high accuracy due to emulating symbolic computations
on top of properly distributed representations.1

1 Introduction
Abstract reasoning is often regarded as a core feature of hu-
man intelligence. This cognitive process involves abstract-
ing rules from observed patterns in a source domain, and ap-
plying them in an unseen target domain. With the ultimate
aim to achieve human-level intelligence, abstract reasoning
tasks have sparked the interest of many in machine learning
research. Thanks to the availability of large datasets (Bar-
rett et al. 2018; Zhang et al. 2019; Hu et al. 2021), vari-
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1Our code is available at https://github.com/IBM/raven-large-
language-models.

ous learning-based methods, ranging from pure connection-
ist (Benny, Pekar, and Wolf 2021; Wu et al. 2020) to neuro-
symbolic (Zhang et al. 2021, 2022; Hersche et al. 2023,
2024a; Camposampiero et al. 2024; Sun et al. 2025) ap-
proaches, achieved promising results in this domain.

More recently, the zero- and few-shot capabilities of
LLMs and their multi-modal variants have been tested on
various abstract reasoning tasks such as verbal (Webb,
Holyoak, and Lu 2023; Stevenson et al. 2023; Gendron et al.
2024; Lewis and Mitchell 2024) or visual (Cao et al. 2024;
Webb, Holyoak, and Lu 2023; Hu et al. 2023; Mitchell, Pal-
marini, and Moskvichev 2024; Camposampiero et al. 2023;
Jiang et al. 2024; Ahrabian et al. 2024; Zhang et al. 2024;
Wüst et al. 2024; Latif et al. 2024; Lewis and Mitchell
2024) analogies. One natural approach towards zero-shot vi-
sual abstract reasoning is to leverage multi-modal LLM’s vi-
sion capabilities to solve the task end-to-end. However, these
multi-modal models perform significantly worse than their
text-only version (Mitchell, Palmarini, and Moskvichev
2024), which might stem from a missing fine-grained com-
positional feature comprehension (Cao et al. 2024). As
an additional help, LLMs have been provided with text-
only inputs by giving them access to an oracle perception,
i.e., providing perfectly disentangled representations (Webb,
Holyoak, and Lu 2023; Hu et al. 2023). While this improves
their reasoning abilities, LLMs still fail to achieve perfect
accuracy on many simple tasks. One example is represented
by Raven’s progressive matrices (RPMs) (Raven, Court, and
Raven 1938), a benchmark that tests visual abstract rea-
soning capabilities by measuring the fluid intelligence of
humans. Here, the state-of-the-art (SOTA) LLM-based ap-
proach (Hu et al. 2023) achieves only 86.4% accuracy in the
center constellation of I-RAVEN (Hu et al. 2021), which
we observe to be a gate-keeper for this task (see Section 2).

In contrast, recent neuro-symbolic approaches showed not
only almost perfect accuracy on the center constellation
of I-RAVEN, but also demonstrated high fidelity in out-
of-distribution (OOD) settings. For instance, the Abductive
Rule Learner with Context-awareness (ARLC) represents at-
tribute values with high-dimensional, distributed representa-
tions based on vector-symbolic architectures (VSAs) (Plate
1995, 2003; Gayler 2003; Kanerva 2009). This allows
to perform probabilistic abductive reasoning in superpo-
sition, notably reducing the compute and memory de-
mand that is usually dominated by weighted model count-
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Figure 1: This work compares the abstract reasoning capabilities of large language models (LLMs) and neuro-symbolic ARLC
on Raven’s progressive matrices (RPM) tests. a) An RPM example taken from the center constellation of I-RAVEN. The task
is to find the empty panel at the bottom-right of the context matrix by selecting one of the answer candidates. b) Solving RPMs
through LLM prompting. Visual attribute values are extracted from the I-RAVEN dataset and assembled to individual per-
attribute text-only prompts. LLMs are prompted to predict the attribute of the empty panel. Finally, the attribute predictions are
compared with the answer candidates, whereby the best-matching answer is selected as the final answer. c) Solving RPMs with
neuro-symbolic ARLC that relies on distributed similarity-preserving representations and manipulates them via dimensionality-
preserving operations; it learns rule-formulations as a differentiable assignment problem.

ing (Zhang et al. 2021; Raedt et al. 2015). Learning the
RPM rules becomes a differentiable assignment problem of
high-dimensional panel representations in a series of bind-
ing and unbinding operations, which can be solved with un-
constrained optimization algorithms such as stochastic gra-
dient descent (SGD). ARLC outperformed the SOTA LLM-
based approach (Hu et al. 2023) both on in-distribution
and OOD, thanks to relying on structured and similarity-
preserving representations based on fractional power encod-
ing (FPE) (Plate 2003). Moreover, ARLC’s rules could still
be manually programmed and further trained allowing to ex-
tend the knowledge of the model, rather than completely
erasing it as shown in other settings (Wu, Zhang, and Shu
2019).

This paper extends on the initial work on ARLC (Cam-
posampiero et al. 2024), by comparing its abstract reasoning
capability with two prominent LLMs, GPT-4 (OpenAI et al.
2024) and Llama-3 70B (Dubey et al. 2024) (see Figure 1).
Circumventing the perception by providing ground-truth at-
tribute labels to the models allows us to measure their ana-
logical and mathematical reasoning capabilities in isolation
when such compositionally structured (i.e., disentangled)
representations are provided. Our comprehensive prompting
efforts lead to very high accuracy for Llama-3 70B (85.0%)
and GPT-4 (93.2%), where the latter notably outperforms
previous reports with GPT-3 (Hu et al. 2023) (86.4%) and
GPT-4 o1-preview (Latif et al. 2024) (18.00%). The LLM’s
still imperfect accuracy on the isolated task motivated us to
further analyze their capability of detecting and executing
different rules. In both GPT-4 and Llama-3 70B, we find a
notable weakness in performing arithmetic rules that require
row-wise additions or subtractions (e.g., see the last prompt
in Figure 2). To gain more insight about this behavior, we set
up a new RPM dataset (I-RAVEN-X) that increases the grid
size from 3×3 to 3×10, additionally allowing for a config-
urable dynamic range for the arithmetic computations. Also

here, we observe a notable weakness in the arithmetic rule
that gets even amplified by an increasing dynamic range. On
the other hand, ARLC demonstrates high accuracy on larger
grid sizes and allows to increase the dynamic range without
requiring further retraining, thanks to the the capability of
adjusting the underlying structured FPE representations.

2 Datasets
I-RAVEN
We test the models on the center constellation of I-
RAVEN (Hu et al. 2021) (see Figure 1). The test consists
of a 3×3 context matrix and eight answer candidate pan-
els. Each panel contains an object, characterized by dif-
ferent attributes (shape, size, and color). The relation be-
tween each attribute’s value in different panels is governed
by a well-defined set of rules: constant, progression,
arithmetic, and distribute three. The task is to
infer the rule governing each attribute in the context matrix
and use it to determine the content of the missing (bottom-
right) panel, selecting it within the eight candidate answers.
Compared to other RPM benchmarks that have been used to
evaluate LLMs (Webb, Holyoak, and Lu 2023), I-RAVEN
tests a more complex range of logical and arithmetic skills.
While I-RAVEN provides tests in various constellations with
more objects that may intuitively appear more arduous to
solve, LLMs are more challenged with the seemingly simple
constellations. For instance, GPT-3 achieved a higher accu-
racy on the 2x2 and 3x3 constellations (78.0% and 86.4%)
than on center (77.2%) (Hu et al. 2023). Moreover, high
accuracy can be maintained on the 2x2 and 3x3 constella-
tions while only looking at the last row of the context ma-
trix (Hu et al. 2023), effectively showing that no analogical
reasoning is required to solve the test in these constellations.
Hence, we opted to focus our evaluation on the center
constellation only, using 500 samples from I-RAVEN’s test



System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             row 1: 5, 5, 5; 
             row 2: 3, 3, 3; 
             row 3: 6, 6, 
Output:  6

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             row 1: 6, 6, 6; 
             row 2: 4, 4, 4; 
             row 3: 2, 2, 
Output: 2

Attribute: shape
Rule: constant
Correct answer: 6

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             row 1: 8, 2, 6; 
             row 2: 1, 0, 1; 
             row 3: 8, 7, 
Output:  6

Attribute: size
Rule: constant
Correct answer: 2

Attribute: color
Rule: arithmetic -
Correct answer: 1

a) LLM prompts for I-RAVEN

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
      

Output:  242

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!

Output: 695

Attribute: shape
Rule: progression
Correct answer: 242

System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             

Output:  352

Attribute: size
Rule: constant
Correct answer: 695

Attribute: color
Rule: arithmetic -
Correct answer: 58

b) LLM prompts for our new I-RAVEN-X
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Figure 2: Prompting LLMs to predict the missing content (value) of the RPM. Correct ouputs are marked green and wrong
ones red. a) Individual per-attribute text-only prompts to solve RPM tasks from I-RAVEN. b) Example prompts with of our
novel configurable I-RAVEN-X dataset of size 3×10 with a value range of m = 1000. In both the I-RAVEN and I-RAVEN-X
examples, the LLM (GPT-4) errs in the arithmetic rules.

set. Inspired by recent works (Webb, Holyoak, and Lu 2023;
Hu et al. 2023), we simplify RPM from a visual abstract
reasoning test to a purely abstract reasoning test. Assuming
a perfect perception, we extract the attribute values from I-
RAVEN and use them to create the prompts for the model.

New I-RAVEN-X
To further evaluate the mathematical reasoning capabili-
ties at scale, we introduce an extension of the I-RAVEN’s
center constellation, called I-RAVEN-X. Our new bench-
mark maintains I-RAVEN’s rules and attributes but allows
for a parameterizable number of columns (g) and a dynamic
range of attribute values (m). Appendix D provides details
about the dataset generation, and Figure 2b shows example
prompts from I-RAVEN-X.

3 LLM-based RPM solving
Models
We focused our evaluations on text-only LLMs. There ex-
ist attempts (Mitchell, Palmarini, and Moskvichev 2024;
Jiang et al. 2024; Cao et al. 2024; Ahrabian et al. 2024;
Zhang et al. 2024) that leverage vision support of some
multi-modal LLMs (e.g., GPT-4V) directly feeding the mod-
els with visual RPM data; however, they achieve consis-
tently lower reasoning performance than with text-only
prompting. The SOTA LLM-based abstract reasoning ap-
proach (Hu et al. 2023) relied on reading out GPT-3’s
(text-davinci-002) token probabilities. However, this
model is no longer accessible to users, and its successive it-
erations did not allow prediction logits to be retrieved at the
time of writing. Hence, we considered discrete classifica-
tion approaches that are based on output strings rather than
distribution over tokens. In particular, we investigated two
SOTA LLMs: the proprietary GPT-4 (OpenAI et al. 2024)2

(gpt-4-0613) and the open-source Llama-3 70B (Dubey

2GPT-4 was accessed between 07/03/2024–10/30/2024.

et al. 2024)3. More recent iterations of these models were not
considered in our analysis for different reasons. Meta’s attri-
bution requirement in their updated terms regarding naming
conventions prevented us from testing Llama-3.1 During ini-
tial tests, GPT-4o yielded worse results than GPT-4, hence
we focused on GPT-4. Moreover, GPT-4 o1’s poor abstract
reasoning results on RPM (Latif et al. 2024) (18% on 2x2
RAVEN) and its limited availability (only preview version
available at time of writing) prevented us from performing
statistically significant tests on this chain-of-thought model.

Prompting and classification
Entangled and disentangled prompts Following (Hu
et al. 2023), we evaluated two different prompting strate-
gies, entangled and disentangled prompting. The entangled
prompting provides all the attributes’ values in a single
prompt (see Appendix A). The disentangled prompting, on
the other hand, is a compositionally structured approach that
queries the LLM for individual attribute prediction. Disen-
tangled prompting simplifies the task, but increases the num-
ber of queries by 3×.

Discriminative and predictive classification Similarly
to (Gendron et al. 2024), we consider two approaches to
solve RPM tests with LLMs. In the discriminative approach,
we provide the attribute descriptions of both the context ma-
trix and the answer candidates. The LLM is then asked to re-
turn the panel number of the predicted answer. Appendix A
provides an example prompt of the discriminative approach.
In the predictive approach, we prompt the LLM only with
the context matrix without the candidate answers. The LLM
has to predict the value of the empty panel (see Figure 2).
For selecting the final answer, we compare the predicted
values with the answer panels and pick the one with the
highest number of overlapping values. While the predictive
approach may appear more difficult, it implicitly biases the

3The model weights were downloaded and evaluated locally.



LLM to approach the task as humans usually do, i.e., first ap-
plying a generative process to abduce rules and execute them
to synthesize a possible solution, and then discriminatively
selecting the most similar answer from choices (Holyoak
and Morrison 2013). Moreover, the final answer selection
is done without the intervention of the LLM, rendering phe-
nomena like hallucinations less likely. Thus, the predictive
classification can be seen as a more guided approach that
helps LLM to solve the task.

Additional enhancements Finally, we also employ well-
known prompting-enhancing techniques such as self-
consistency (Wang et al. 2023; Lewkowycz et al. 2022) and
in-context learning (Brown et al. 2020) to improve the per-
formances. More details are provided in Appendix A.

4 ARLC: learning abductive reasoning using
VSA distributed representations

This section presents the Abductive Rule Learner with
Context-awareness (ARLC), which performs neuro-
symbolic reasoning with distributed VSA representations
(see Figure 3). ARLC projects each panel’s attribute value
(or distributions of values) into a high-dimensional VSA
space. The resulting VSA vectors preserve the semantic sim-
ilarity between attribute values: the dot products between
corresponding VSA encoded vectors define a similarity
kernel (Plate 2003; Frady et al. 2022). Moreover, simple
component-wise operations on these vectors, binding and
unbinding, perform addition and subtraction respectively
on the encoded values. For rule learning, ARLC introduces
a generic rule template with several terms forming a series
of binding and unbinding operations between vectors. The
problem of learning the rules from data is reduced to a
differentiable assignment problem between the terms of the
general rule template and the VSA vectors encoding the
contents of the panels, which can be learned with standard
SGD. ARLC was initially presented in (Camposampiero
et al. 2024); this work mainly compares it to the reasoning
capabilities of LLMs on I-RAVEN, and demonstrates its
extension to larger grid sizes and dynamic ranges on our
novel I-RAVEN-X.

From visual attributes to distributed VSA
representations
ARLC’s key concept is to represent attribute values with
high-dimensional, distributed VSA vectors that preserve the
semantic similarity between the attribute values thanks to an
introduced notion of kernel. We start by defining a VSA that
equips the space with dimensionality-preserving vector op-
erations (binding ⊗, unbinding ⊘, and bundling ⊕) as well
as a similarity function (sim(·, ·)). For example, ARLC uses
binary generalized sparse block codes (GSBCs) (Hersche
et al. 2024b) as a particular VSA instance. In binary GS-
BCs, the D-dimensional vectors are divided into B blocks
of equal length, L = D/B, where only one (randomly se-
lected) element per block is set to 1 (D = 1024 and B = 4).
The algebraic operations of binary GSBCs are defined in Ta-
ble 1. See Appendix B for a detailed background on VSA.

Next, we define a mapping z : Z+ → RD that enables
the projection of input RPM attributes into a correspond-

ing high-dimensional, semantically-rich feature space. Note
that this work focuses on mapping integer values as the at-
tribute values in I-RAVEN are integer-valued too. However,
generalizing this approach to real-valued domain mappings
is possible using frequency holographic reduced represen-
tations (FHRR) (Plate 1995). Leveraging fractional power
encoding (FPE) (Plate 2003), a value v ∈ Z+ is encoded
as z(v) = zv =

⊗v
n=1 z, where z ∈ RD is a random

binary GSBC vector. This mapping yields a similarity ker-
nel between neighboring vector representations (Frady et al.
2022), as shown in Figure B.7 in Appendix B.

Let us assume two variables with values v1 and v2, which
are represented with two VSA vectors (z(v1) = zv1 and
z(v1) = zv2 ). Binding the two vectors yields z(v1) ⊗
z(v2) = zv1 ⊗ zv2 = zv1+v2 . Hence, binding in the VSA
space is equivalent to the addition in R. In other words,
the FPE initialization allows to establish a semantic equiva-
lence between high-dimensional vectors and real numbers.
This property is consistently exploited in ARLC’s frame-
work, as it allows to solve the analogies in the RPM puz-
zles as simple algebraic operations in the domain of real
numbers. For example, by computing the similarity be-
tween the bound representation and a third projected vari-
able (sim(zv1+v2 , zv3)), we can evaluate if v1 + v2

?
= v3

representing the arithmetic plus rule in RPM.
One advantage of performing reasoning with distributed

VSA representations is its capability to represent perceptual
uncertainty in the variable values. Connecting to the previ-
ous example, let us assume that the first variable takes value
v1 with probability p and value v′1 with probability p′ =
1−p. The distribution can be encoded as the weighted super-
position of the two corresponding codewords: p·zv1+p′·zv′

1 .
The similarity computation between the bound representa-
tion and a third variable would then yield

sim((p · zv1 + p′ · zv
′
1)⊗ zv2 , zv3) =

p · sim(zv1 ⊗ zv2 , zv3) + p′ · sim(zv
′
1 ⊗ zv2 , zv3),

where we use the linearity of the binding operation and the
similarity metric. This formulation allows the validation of
multiple solutions (in this case two) using only a single bind-
ing and similarity computation.

In the RPM application, each panel’s label is translated
to a probability mass function (PMF) p(i,j)

a , where a is the
attribute, i is the row index and j is the column index of the
panel. The panel’s PMF is then projected into the VSA space

v(i,j)
a =

m∑
k=1

p(i,j)
a [k] · zk,

where m is the number of possible values that the attribute a
can assume. Overall, this yields eight VSA vectors for each
attribute a (one for each panel of the input RPM matrix).
Note that the basis vectors are pre-computed and stored in a
dictionary C = {zk}ri=1 containing m elements.

Learning RPM rules as an assignment problem
As we have seen in the previous example, RPM rules can be
represented using VSA operations. Generalizing the appli-
cation beyond the arithmetic plus rule, we find that
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Figure 3: ARLC architecture. ARLC maps attribute values, or distributions of values, to distributed VSA representations,
where the semantic similarity between values is preserved via a notion of kernel. Learnable rules (r1, ..., rR) predict the VSA
representation of the empty panel (v̂(3,3)

a,r ) together with a confidence value (sr). The closest answer to the predicted soft-
selected prediction (v̂(3,3)

a ) is chosen as the final answer.

(a) X = {R1}, O = {R2, R3} (b) X = {R2}, O = {R1, R3} (c) X = {R3}, O = {R1, R2}

Figure 4: Visualization of current samples (X = {x1, x2}, in yellow) and context (O = {o1, . . . , o5}, in green) panels when
predicting the third panel for different rows, namely the first row (left), second row (center) and third row (right). Black objects
represent panels that are not used for the computation, while the question mark represents the unknown test panel, which is
unavailable during inference.

Table 1: VSA operations and their equivalent in R.

Operation Binary GSBCs with FPE Equivalent in R
Binding (⊗) Block-wise circular convolution Addition +

Unbinding (⊘) Block-wise circular correlation Subtraction −
Bundling (⊕) Sum & normalization —
Similarity (⊙) Cosine similarity (cos(·, ·)) —

the rules used in RPM can be framed as a series of binding
and unbinding operations:

r =(c1 ⊗ c2 ⊗ c3 ⊗ c4 ⊗ c5 ⊗ c6)⊘
(c7 ⊗ c8 ⊗ c9 ⊗ c10 ⊗ c11 ⊗ c12) , (1)

where ci can be assigned to a context panel v(i,j)
a or the

identity e. In this setting, learning the rules of RPM can
hence be interpreted as an assignment problem between
VSA vectors and terms of Equation (1).

Motivated by works in cognitive sciences and psychology
that argue for the importance of context in the solution of
analogies for humans (Chalmers, French, and Hofstadter
1992; Cheng 1990), ARLC uses a general formulation of
the soft-assignment problem which relies on the notion of

context:

ck =

I∑
i=1

wi
k · xi +

J∑
j=1

uj
k · oj + vk · e, (2)

where w,u,v are the learned parameters and they are sub-
ject to the following constraints:

I∑
i=0

wi
k +

J∑
j=0

wj
k + vk = 1,

0 ≤ wi
k ≤ 1∀i, 0 ≤ uj

k ≤ 1∀j, 0 ≤ vk ≤ 1, ∀k.
Here, X = {x1, . . . ,xI} is the set of attributes that define

the current sample, that is, the description of the problem for
which we infer a solution. O = {o1, . . . ,oJ} is the set of at-
tributes that define the context for that sample, that could be
interpreted as a working memory from which additional in-
formation to infer the answer can be retrieved. For predicting
the empty panel in the last row, the context (O) corresponds
to the first two rows and the current samples (X) to the last
row (see Figure 4c). We augment this standard prediction
with two more permutations, which aim to predict the last
panel of the first and second row (see Figure 4a and Fig-
ure 4b). The knowledge of the right-most panels in the first



two rows allows us to compute a rule confidence by compar-
ing the rule’s prediction with the actual panel representation
via the cosine similarity.

Executing and selecting the learned rules
Inference with the learned rule set is a two-step process: an
execution step (where all the rules are applied in parallel to
the input) and a selection step (where a prediction for the
missing panel is generated). The application of each rule r
to an RPM example generates a tuple of three VSA vectors
(v̂

(i,3)
a,r )3i=1, which corresponds to the result of the rule exe-

cution on the three rows of the RPM matrix, together with a
rule confidence value sr. The confidence value is computed
as the sum of the cosine similarities between the predicted
VSA vectors and their respective ground-truth vector,

sr =

3∑
i=1

cos
(
v(i,3)
a , v̂(i,3)

a,r

)
. (3)

During inference, the last term of the sum (i = 3) is omitted,
as the ground truth for the third row is unknown.

The answer is finally produced by taking a linear com-
bination of the VSA vectors generated by executing all the
rules, weighted by their respective confidence scores (nor-
malized to a valid probability distribution using a softmax
function). More formally, if we define s = [s1, . . . , sR]
to be the concatenation of all rules’ confidence score and
V̂

(3,3)
a = [v̂

(3,3)
a,1 , . . . , v̂

(3,3)
a,R ] to be the concatenation of all

rules’ predictions for the missing panel, the final VSA vec-
tor predicted by the model for the attribute a becomes

v̂(3,3)
a = softmax (s) · V̂(3,3)

a . (4)

The use of the weighted combination can be understood as a
soft-selection mechanism between rules and was found to be
more effective compared to the hard-selection mechanism
provided by sampling (Hersche et al. 2024a).

Training Loss and other Implementation Aspects
We follow the training recipe provided by Learn-VRF (Her-
sche et al. 2024a). The model is trained using stochastic gra-
dient descent (SGD) with a learning rate lr = 0.01 for 25
epochs. The training loss is defined as the inverse cosine
similarity between the three predicted panels and their cor-
responding ground truth

L = 1−
3∑

i=1

cos
(
v(i,3)
a , v̂(i,3)

a

)
. (5)

As in Learn-VRF, we set the number of rules to R = 5.
A single set of rules is instantiated and shared between all
RPM attributes.

Applying ARLC on I-RAVEN-X
While ARLC was initially designed for I-RAVEN, it can be
seamlessly extended to our I-RAVEN-X with minor mod-
ifications. First, the number of binding/unbinding terms in
Equation (1) is increased, e.g., from 12 to 22 to support the
larger grid size of g = 10. Moreover, we increase the num-
ber of entries in the dictionary (C) to support the larger dy-
namic range (m). Notably, only varying the dynamic range

Table 2: Task accuracy (%) on the center constellation
of I-RAVEN. Among the baselines, we replicate Learn-
VRF (Hersche et al. 2024a); the other results are taken
from (Hersche et al. 2023). The standard deviations are
reported over 10 random seeds. Llama-3 and GPT-4 are
queried with the corresponding best prompting technique
(see Table 3). Number of parameters for GPT-4 is not pub-
licly available. The reasoning backend of PrAE, NVSA, and
our ARLCp 7→l do not have trainable parameters.

Method Parameters Accuracy

MLP (Hersche et al. 2024a) 300 k 97.6
SCL (Wu et al. 2020) 961 k 99.9±0.0

PrAE (Zhang et al. 2021) n.a. 83.8±3.4

NVSA (Hersche et al. 2023) n.a. 99.8±0.2

Learn-VRF (Hersche et al. 2024a) 20 k 97.7±4.1

GPT-3 (Hu et al. 2023) 175 b 86.4

Llama-3 70 b 85.0
GPT-4 unk. 93.2
ARLCprogr n.a. 100.0±0.0

ARLClearn 480 98.4±1.5

at constant grid size does not require retraining: we can sim-
ply replace the dictionary in order to support OOD general-
ization. Indeed, we could demonstrate that ARLC trained on
a dynamic range of m = 45 can favorably generalize to a
dynamic range of m = 1000.

5 Results
Main results on I-RAVEN
Table 2 compares our LLM results with ARLC on the
center constellation of I-RAVEN, also considering a
range of neuro-symbolic and connectionist baselines. For
the LLMs, we show the results with the corresponding best
prompting techniques (see the ablation in the next subsec-
tion).

Moreover, we present results for two different versions of
ARLC: ARLCprogr, where the model’s weights are manually
programmed with RPM rules (R = 4, since constant
can be considered as a special case of progression), and
ARLClearn, where the rules are learned from scratch from
data.

Among the LLM approaches, our GPT-4-based approach
achieved the highest accuracy (93.2%) notably outper-
forming previous SOTA LLM-based abstract reasoning ap-
proaches on this benchmark (86.4%) (Hu et al. 2023). Yet,
all LLM approaches fall behind the tailored connectionist
and neuro-symbolic solutions. Notably, with only 480 learn-
able parameters, ARLC achieves a high accuracy of 98.4%.

Ablation of LLM prompting techniques
Table 3 shows the task accuracy on I-RAVEN using GPT-
4 and Llama-3 70B in various prompting configurations.
Overall, both models benefit from the additional guidance
provided by our prompting techniques. Concretely, using a
predictive approach and querying for individual disentan-
gled attributes yielded already high accuracies (91.4% and



Table 3: Task accuracy (%) on the center constellation of I-RAVEN ablating various LLM prompting techniques.

Predictive/
discriminative

Disentangled queries
per attribute (3×queries)

Self-consistency
(n=7)

In-context learning
(s=16) GPT-4 Llama-3 70B

Discriminative 56.0 22.8
Discriminative ✓ 60.0 22.4
Predictive 74.8 79.0
Predictive ✓ 91.4 83.2
Predictive ✓ ✓ 93.2 84.8
Predictive ✓ ✓ 85.4 84.8
Predictive ✓ ✓ ✓ 86.4 85.0

Table 4: Accuracy (%) of predicting the correct attribute value. Results are averaged across attributes.

Model Disentangled queries
per attribute (3×queries) Constant Progression Distribute three Arithmetic

GPT-4 No 100 98.0 91.6 27.1
Yes 100 100 99.5 73.6

Llama-3 70B No 100 97.2 99.3 31.0
Yes 100 100 96.6 45.0

83.2% for GPT-4 and Llama-3 70B, respectively). Introduc-
ing self-consistency further improves the accuracy for both
models. Llama-3 70B’s performance can be further pushed
(to 85.0%) by using self-consistency and in-context learn-
ing. On the contrary, GPT-4 cannot make use of the addi-
tional in-context samples, yielding a lower accuracy instead.

LLMs show weakness in arithmetic rule
Even though both LLMs achieve a reasonable overall task
accuracy, they fail in some instances. We shed more light
on the reasoning capability of the two models by ana-
lyzing the accuracy of predicting the correct value for a
given rule. As shown in Table 4, both models perform
well on constant, progression, and distribute
three rules, whereas the accuracy notably drops for the
arithmetic rule. One explanation for the accuracy drop
could be the LLM’s tendency for (short-sighted) relational
reasoning, instead of performing relational mapping that re-
quires the understanding of the first two rows before apply-
ing a rule on the last row (Stevenson et al. 2023). We an-
alyze this hypothesis in Appendix C, where we attempt to
explain the LLM’s wrong predictions by rules that may have
been inferred from the last row. For GPT-4, 32 out of 68
errors can be explained by rules that might have been in-
ferred from a partial context matrix, e.g., a constant or
progression rule based on the last row.

Results on our novel I-RAVEN-X
Finally, we conduct experiments on our novel I-RAVEN-
X test, which allows us to configure the matrix size and
the dynamic range of the attribute values. We fix the grid
size to 3 × 10 and vary the dynamic range between 50,
100, and 1000. As shown in Table 5, the performance on
the arithmetic rule drops not only due to the larger
grid size but also generally degrades with an increasing dy-
namic range: the arithmetic accuracy falls below 10% for

Table 5: Arithmetic accuracy (%) on I-RAVEN and our
novel I-RAVEN-X. The LLMs use self-consistency (n=7).
For ARLClearn we report max/mean evaluation accuracies
over 5 different training seeds.

I-RAVEN I-RAVEN-X
3× 3 3× 10

Dynamic range 5–10 50 100 1000

Llama-3 70B 45.0 1.5 2.6 0.4
GPT-4 73.6 30.4 25.1 8.4
ARLCprogr 100.0 99.8 100.0 99.5
ARLClearn 99.5/99.2 99.1/95.5 98.9/96.3 97.9/95.3

both LLMs at the highest dynamic range (1000). At the same
time, our ARLC maintains a high accuracy across the board,
while only being trained at dynamic range of 50 and recon-
figured for the higher ranges. Appendix D shows that the
same trend holds for the overall task accuracy.

6 Conclusion

This work revealed LLM’s limitations in recognizing and
executing arithmetic rules in abstract reasoning tasks, de-
spite being provided disentangled prompts with ground-
truth visual attributes and using advanced prompting tech-
niques. We further showed the serious limitation on a larger
(3×10) RPM test. As a viable alternative, we presented a
neuro-symbolic approach (ARLC) that achieves a high ac-
curacy both on I-RAVEN and our I-RAVEN-X, thanks to
learning to reason with distributed VSA representations and
operators. We hope that our findings will lead to the devel-
opment of architectures that aim to improve reasoning ca-
pabilities, e.g., by integrating symbolic solvers such as our
ARLC into LLMs.
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Wüst, A.; Tobiasch, T.; Helff, L.; Dhami, D. S.; Rothkopf,
C. A.; and Kersting, K. 2024. Bongard in Wonderland: Vi-
sual Puzzles that Still Make AI Go Mad? In The First Work-
shop on System-2 Reasoning at Scale, NeurIPS’24.
Zhang, C.; Gao, F.; Jia, B.; Zhu, Y.; and Zhu, S.-C. 2019.
RAVEN: A Dataset for Relational and Analogical Visual
REasoNing. In 2019 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), 5312–5322. Long
Beach, CA, USA: IEEE.
Zhang, C.; Jia, B.; Zhu, S.-C.; and Zhu, Y. 2021. Ab-
stract Spatial-Temporal Reasoning via Probabilistic Abduc-
tion and Execution. In 2021 IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), 9731–9741.
Nashville, TN, USA: IEEE.

Zhang, C.; Xie, S.; Jia, B.; Wu, Y. N.; Zhu, S.-C.; and Zhu,
Y. 2022. Learning Algebraic Representation for Systematic
Generalization in Abstract Reasoning. In European Confer-
ence on Computer Vision (ECCV), 692–709. Springer.
Zhang, Y.; Bai, H.; Zhang, R.; Gu, J.; Zhai, S.; Susskind,
J. M.; and Jaitly, N. 2024. How Far Are We from Intelligent
Visual Deductive Reasoning? In ICLR 2024 Workshop: How
Far Are We From AGI.



A Prompting details
This appendix provides more details on our prompting strat-
egy. While the prompt design was mainly inspired by (Hu
et al. 2023), we extended it with predictive and discrimina-
tive classification and fine-tuned it for the different models.
For example, we found that adding a prefix (“Only return the
missing number”) helped to slightly improve GPT4’s accu-
racy, whereas it reduced Llama-3 70B’s performance. Thus,
we used individual prompts for the different models.

Joint attribute querying
As an alternative to individually querying the LLM for pre-
dicting the separate attributes, we also devised a joint at-
tribute prompting scheme, shown in Figure A.5. The at-
tributes of each panel are represented in brackets: (shape,
size, color). In this setting, the LLM is required to pre-
dict all three attributes of the missing panel at once. For bet-
ter distinguishing between the different attributes, they are
scaled with individual factors (1×, 0.1×, 10×).

Discriminative classification approach
Figure A.6 shows an example prompt for performing dis-
criminative classification. As shown, the answers only con-
tain two distinct values (“6” and “7”); finding the correct an-
swer requires the consideration of all attributes. For choos-
ing the final answer, we extract all attribute values that cor-
respond to the predicted answer (e.g., value “7” for shape)
and select the best matching answer candidate, i.e., the an-
swer with the highest number of overlaps with the predicted
attributes.

Self-consistency
As an optional extension, we employ self-
consistency (Wang et al. 2023; Lewkowycz et al. 2022) by
querying the model multiple times (n = 7 times), sampling
the next token from the distribution with a non-zero soft-
max temperature. We find the optimal soft-max temperature
for GPT-4 (T = 0.5) and Llama-3 70 B (T = 0.4) via a
grid search on a subset of 50 I-RAVEN problems. We did
not explore the effect of other parameters, such as top-k or
top-p, and set them to the default values. The final prediction
is determined by a majority vote over the sampled outputs.
The selection of an odd number of samples (i.e., n = 7)
helps to prevent potential ties.

In-context learning
For a better understanding of the RPM task, we optionally
prefix 16 in-context examples to the prompt (Brown et al.
2020). In the predictive classification approach (where no
answer candidates are provided), we simply provide com-
plete example RPM matrices. The in-context samples are
randomly selected from I-RAVEN’s training set. Examples
that had the same context matrix as the actual task are dis-
carded and re-sampled to prevent shortcut solutions.

B Vector-symbolic architectures
Vector-symbolic architectures (VSAs) (Plate 1995, 2003;
Gayler 2003; Kanerva 2009) are a family of computa-
tional models that rely on the mathematical properties of

high-dimensional vector spaces. VSAs make use of high-
dimensional distributed representations for structured (sym-
bolic) representation of data while maintaining the ad-
vantages of connectionist distributed vector representations
(see (Kleyko et al. 2023) for a survey). Here is a formal def-
inition of VSAs:
Definition 1 (VSA). A vector-symbolic architecture (VSA)
consists of a 4-tuple V = (C,⊕,⊗,⊙), where C is a set
of high-dimensional distributed vectors equipped with two
main operations, ⊕ (bundling) and ⊗ (binding), and on
which it is possible to define a similarity measure ⊙.

Bundling is a similarity-preserving operation that creates
a superposition of the operands, that is, the resulting vector
will have a high similarity with the two operands. Binding,
on the other hand, is an operation that allows to bind a vector
(value) to another vector (key) and does not preserve simi-
larities; it usually allows an inverse operation, called unbind-
ing. The specific realization of the bundling, binding, and
vector space constitute the main difference between mem-
bers of the VSA family.

C Analysis of arithmetic errors
This appendix aims to find explanations for LLM’s errors by
analyzing the structure behind the predicted answers. A re-
cent study (Stevenson et al. 2023) showed that LLMs tend
to solve verbal analogy problems in an associative way in-
stead of performing proper relational mapping. The associa-
tive reasoning can be explained as ignoring the source do-
main and solving the task directly at the target domain (e.g.,
only looking at the possible solutions without reading the
questions). Interestingly, children tend to perform associa-
tive reasoning, whereas adults opt for relational mapping.

In RPMs, the source domain can be defined as the first
two rows (with values x1,1, x1,2, x1,3 and x2,1, x2,2, x2,3),
whereby the target domain is the last row (x3,1, x3,2). There-
fore, an associative reasoner would only look at the last row
to solve the task. In the following, we aim to find potential
incorrect rules that the LLMs may have been inferred from
the last row(s):
• constant: The values of the last row are identical

(x3,1 = x3,2), and the model predicts x̂3,3 = x3,2 = x3,1

• progression: The values of the last row differ by δ =
x3,2 − x3,1, and the model predicts x̂3,3 = x3,2 + δ

• short constant: The model just copies the penulti-
mate value: x̂3,3 = x3,2.

• short distribute three: Assuming a distribute
three over the last two rows: x3,1 ∈ {x2,1, x2,2, x2,3},
x3,2 ∈ {x2,1, x2,2, x2,3}, and hence x̂3,3 ∈
{x2,1, x2,2, x2,3}.

Figure C.8 shows the resulting confusion matrix summa-
rizing all the attributes. The arithmetic rule has fewer
occurrences as this rule is not integrated in the attribute
shape. As already stated in the main text, the majority of
wrong predictions are related to the arithmetic rule. For
GPT-4, our new rule interpretations can explain 32 out of the
68 errors, while 36 errors remain unknown. Llama-3 70B
showed many more errors in the arithmetic rule; here, we
can explain 57 out of 142 errors with relational reasoning.



System: Complete the Raven's progressive matrix:
User:     Only return the missing numbers!
             row 1: (3,0.5,50), (6,0.5,50), (4,0.5,50); 
             row 2: (4,0.3,10), (3,0.3,10), (6,0.3,10); 
             row 3: (6,0.1,70), (4,0.1,70), (
Out:       3,0.1,70)

Figure A.5: Example prompt for joint prediction of all three attributes.

System: Complete the Raven's progressive matrix:
User:     row 1: 4, 4, 4; 
             row 2: 6, 6, 6; 
             row 3: 7, 7, 

             Select the correct Answer from the following list
             Answer #0: 7
             Answer #1: 6
             Answer #2: 7
             Answer #3: 7
             Answer #4: 6
             Answer #5: 6
             Answer #6: 7
             Answer #7: 6
             
             Solution: The correct answer is Answer #
Output:  0: 7

Figure A.6: Example prompt for discriminative classification approach, where the answer candidates are provided. The under-
lying attribute is shape and the rule is constant.

Figure B.7: Similarity kernel in VSA. Mapping two values
(v1 and v2) to a VSA space (i.e., GSBC in ARLC) that uses
fractional power encoding (FPE) and computing their sim-
ilarity in the VSA space yields the shown similarity kernel
K(v1 − v2).

In summary, some (40.1–47.1%) of the LLM’s errors can
be rooted in relational reasoning. Further understanding the
behavior of the unknown rules is scope for future work.

D I-RAVEN-X
This appendix provides more details on the generation of I-
RAVEN-X, as well as more results on the task accuracy in
Table D.6.

When generating a new RPM example, we uniformly
sample from one of the available rules (constant,
progression, arithmetic, and distribute
three). Note that the attribute shape does not incur the
arithmetic rule. We use I-RAVEN’s attribute bisec-
tion tree (Hu et al. 2021) to generate unbiased candidate
answers. In the following, we describe the context matrix
generation for the individual rules of our new I-RAVEN-X
dataset. The overall goal is that the values stay in the range
[0,m− 1].

• constant: This rule keeps the attribute value constant
per row. For each row, we uniformly sample an integer
from the set {0, 1, ...,m − 1}, and duplicate along the
row.

• progression: The attribute value monotonically in-
creases or decreases in a row by a value of 1 or 2.
First, we uniformly sample the progressive incremen-
t/decrement (δ) from the set {−2,−1,+1,+2}. In case
of a positive increment, we first define the values of the
right-most columns, by uniformly sampling from the set
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Figure C.8: Rule confusion matrix of GPT-4 (left) and Llama-3 70B (right).

{(g − 1) · δ, ...,m − 1} for each row. Then, the rest of
the matrix is completed by applying the progression rule.
The sampling for a negative δ is done specularly from the
first column.

• arithmetic: The attribute values of the first g − 1
panels are either added (arithmetic plus) or sub-
tracted (arithmetic minus), yielding the attribute
value of the last panel in the row. In arithmetic
plus, we sequentially sample the values from the first
g − 1 panels in the row. For each panel, we set the sam-
pling range to {0, ...,m − s}, where s is the sum of the
already sampled panels in the row. Afterward, the first
g − 1 panels are shuffled. Finally, the values of the last
panels are the sum of the first g − 1 ones, applied row-
wise. For arithmetic minus, we apply the same
sampling strategy but leave the first column empty. The
value of the first column is then defined as the sum of the
other columns.

• distribute-n: We uniformly sample distinct values
for the first row from {0, ...,m − 1}. The content of the
remaining rows is defined by applying a circular shift per
row (either right or left).

Table D.6: Task accuracy (%) on I-RAVEN and our novel
I-RAVEN-X. The LLMs use self-consistency (n=7). For
ARLClearn we report max/mean evaluation accuracies over
5 different training seeds.

I-RAVEN I-RAVEN-X
3× 3 3× 10

Dynamic range 5–10 50 100 1000

Llama-3 70B 85.0 76.8 73.0 74.2
GPT-4 93.2 82.2 79.6 76.6
ARLCprogr 100.0 100.0 100.0 99.7
ARLClearn 99.1/98.6 94.6/86.3 95.1/88.0 91.6/82.8


